Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions
نویسندگان
چکیده
[1] Pore pressure changes are rigorously included in Coulomb stress calculations for fault interaction studies. These are considered changes under undrained conditions for analyzing very short term postseismic response. The assumption that pore pressure is proportional to faultnormal stress leads to the widely used concept of an effective friction coefficient. We provide an exact expression for undrained fault zone pore pressure changes to evaluate the validity of that concept. A narrow fault zone is considered whose poroelastic parameters are different from those in the surrounding medium, which is assumed to be elastically isotropic. We use conditions for mechanical equilibrium of stress and geometric compatibility of strain to express the effective normal stress change within the fault as a weighted linear combination of mean stress and faultnormal stress changes in the surroundings. Pore pressure changes are determined by fault-normal stress changes when the shear modulus within the fault zone is significantly smaller than in the surroundings but by mean stress changes when the elastic mismatch is small. We also consider an anisotropic fault zone, introducing a Skempton tensor for pore pressure changes. If the anisotropy is extreme, such that fluid pressurization under constant stress would cause expansion only in the fault-normal direction, then the effective friction coefficient concept applies exactly. We finally consider moderately longer timescales than those for undrained response. A sufficiently permeable fault may come to local pressure equilibrium with its surroundings even while that surrounding region may still be undrained, leading to pore pressure change determined by mean stress changes in those surroundings.
منابع مشابه
Numerical Evaluation of Hydraulic Fracturing Pressure in a Two-Phase Porous Medium
Hydraulic fracturing is a phenomenon in which cracks propagate through the porous medium due to high pore fluid pressure. Hydraulic fracturing appears in different engineering disciplines either as a destructive phenomenon or as a useful technique. Modeling of this phenomenon in isothermal condition requires analysis of soil deformation, crack and pore fluid pressure interactions. In this paper...
متن کاملDevelopment of a mechanical earth model in an Iranian off-shore gas field
Wellbore instability is a quite common event during drilling, and causes many problems such as stuck pipe and lost circulation. It is primarily due to the inadequate understanding of the rock properties, pore pressure, and earth stress environment prior to well construction. This study aims to use the existing relevant logs, drilling, and other data from offset wells to construct a precise mech...
متن کاملThe effect of hydrodynamic pressure of the dam reservoir caused by the earthquake on the results of 3D dynamic analysis of concrete face rockfill dams
Concrete faced rockfill dams (CFRDs) are among the structures that due to their advantages such ease of construction and low execution costs,have attracted more attention nowadays.Due to the fact that during large earthquakes,the hydrodynamic pressure will be large and cannot be ignored,the main purpose of this research is to apply reservoir hydrodynamic pressure of dam reservoir caused by the ...
متن کاملSplay Faults in the Makran Subduction Zone and Changes of their Transferred Coulomb Stress
The Makran subduction zone in northeast and the Sumatra subduction zone (Sunda) in the west have been known as tsunamigenic zones of the Indian Ocean. The 990 km long Makran subduction zone is located offshore of Iran, Pakistan and Oman. Similar to many subduction zones all over the world, the Makran accretionary prism is associated with an imbricate of thrust faults across the zone, which may ...
متن کاملInjection-induced seismicity: Poroelastic and earthquake nucleation effects
The standard model of injection-induced seismicity considers changes in Coulomb strength due solely to changes in pore pressure. We consider two additional effects: full poroelastic coupling of stress and pore pressure, and time-dependent earthquake nucleation. We model stress and pore pressure due to specified injection rate in a homogeneous, poroelastic medium. Stress and pore pressure are us...
متن کامل